AD-786 754
MDC-PROGRAMMER: A MUDDLE-TO-
DATALANGUAGE TRANSLLATOR FOR
INFORMATION RETRIEVAL

Safwan A. Bengelloun

Massachusctts Institute of Technology

Prepared for:

Office of Naval Research

Advanced Research Projects Agency

Octoker 1974

DISTRIBUTED BY:

Natioual Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




- Best
Available
Copy



BIBLIOGRAPHIC DATA V. Report No. 2. 3. R -Cip:ent"s Ace S No,

SHEET MAC T™-53 4]} //5 79 }/

4. Dale and Subnidle . 5. Report Date 17 Issued N
MDC-Programmer: A Muddle-tc-Daialanguage Iranslator for 7 Qctober 1974
Informatfon Retrieval '

7. Vathoris) 8. |T<-rfn:mmg Orpansatyon 1
Safwan A. Bengelloun N MAC M- 52

9. Pertorming Orzanszation Name and Address 10. Project bask Woek Ling N

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

Th Contract Cram No.

545 Technology Square, Cambridge, Massachusetts 02139 NOOO14-70-A-0362-0006

12, Spouscriag Organization Name and Address 13 dype ot Ropus & Poned
Office of Naval Research Covarads - Interim
Department of the Navy Scientitic Report
Information Systems Program 14

Arlington, Va 22217 \

18.

Supplementary Notes \

Based on an S.B. Thesis, MIT Department of Electrical Engineering, May 20, 1974

le.

Lestralts

This memo describes a practical application within the framework of the A"PA
computer network of the philosophy that a fully developed computer network should
appear ac a virtual extension of the user's own software environment. The application
involves the design and implementation of a software facility that will permit users
at MIT's Dynamic Modeling System to consider the retrieval component of the
Datacomputer (developed and run by the Computer Corporation of America) as an
extension of the Muddle environment. This facility generates efficient Datalanguage
retrieval codes, handles inter-process control of the Datacomputer, and manages all
the necessary network connections.

V7. Kev Words and Document Analysis. 17a. Descriprors
ftoprocticmt ¥
NATIONAL THCHNICAL
i RoATON try
r - % e
21 phert v A
7. b vee Open bt f Tomms
17c. € OSA T e ld/Geoup
18. Avarlatulity Sarement 19. Sccuery Class tThis ]‘ Solol gy
K« purt)
Approved for Public Relcase; i UNCLASSU LD ¢8|
. S ty (1} (1h 22. b
Distribution Uniimited 0 ST TS - | 5’;2;“’
UL ASSIEGED L, 2,
¢ OmA QTS 4 1Ry ¢ T Liee FYP LI

THIS FORM MAY BE Ry PRODUCTD




MDC-PROGPANMER: .
A MUDDLE-TO-DATALANGUAGE TRANSLATOR FOR

INFORMATION RETRIEVAL

Technical Memorandum

by

Safwan A. Bengelloun

June 1974

This research was supported by the Advan-ed Rezeirch Projects
Agency of the Department of Defense, under 2Avl Order No. 2095,
which was monitored by Office of Naval Research Contract No.
NOOC14-70-A-0362-0006.

PROJECT FAC
HASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massdchusetts 02139




ABSTRACT

This memo describes a practical application within the framework
of the ARPA computer network of the philosophy that a fully
developed computer network should appear as a virtual extension
of the user's own coftware environment. The appliication
involves the design and implementation of a software facility
that will permit users at NIT's Dynamic Modeling System to
considcr the retrieval component.ct the Datacomputer {daveloped
and run by the Computer Corporation of America) as an extension
of the Muddle environment. This facility generates efficient
Datalanguage retrieval code, handles inter-process control of
the Datacomputer, and manages a'l the necessary network
corpections.

This memo reproduces a thesis of the sape title submitted to the
Department of Electrical Engineerirg, H.1.T., on Nay 20, 1974,
in partial fulfillment of the requirement: for the Degree of
Bachelor of Sciencs.




ACKNOWLEDGEMENTS

The author would likc to .hank Mr. Albert Vezza for
encouragement and guidance in writirg this memo. Thanks are
also due to Hal Furray et al. at CCA for many discussions about
the Datac~m uter, and to the'nenbers of the Programming

Technology Division for their support and suggestions.




TABLE OF CONTENTS

INTRODUCTION. . . . . . . . . o oo oo oo s PAGE.
QIALIME: ¢ © 6 ¢ 0 0 09 6 0 6 0o 006 0000000500 c PAGE
I. THE ARPANET. . . . . . . . . . . . . . o v v v v PAGE

J1. THE TWO SYSTEMS

THE DATACONPUTER. . . . . . . . . . . . ... .. PAGE
WIIHEG o 0 0 6 6 0 6 0 0c 06 00006006000 G PAGE
II1. THE TRANSLATION SYSTEM. . . . . . . 900000 0 c PAGE
PROCESS-PRTCESS COriMUNICATION. . . . . . . . . PAGE
COMPARISON WITH PREVICUS SVCYEMS. . . . . . . . . PAUE
SCENARIO . . . . Lo L. PAGE
IV. CONCLUDING REMARK. . . . . .. ..., .. PAGE
REFERENCES. . . . . . . . . . . .. ... PAGE
APPENDIX 1: FILE MODELS. . . . . . . . . . . . ... .. PAGE
APPENDIX 2: PROGRAM ABSTRACTS. . . . . . . .. ... .. PAGE

12

18

20




INTRODUCTION

The efficient use of computing rescurces has been
historically one of the primary concerns of computer scientists.
The efforts in this direction have run along two parallel paths,
the one being the optimization of the sharing of hardware
resources {computing power), and the other the increasingly more
important area of the sharing of software resources. The former
vroblexw forced the trend away from dedicated systems and towards
the multi-programmed, multi-access computer that 1is now in
common use in virtually every application branch of data
processing. But mﬁlzi:programﬁed systems per se do not provide
an appronriate framework within which to apprcach the software
problem. In particular:

(a) Because the number of users that have &ccess to a
single multiprogrammed facility is limited in size, and L..ause
the demand for different applications is va-ied, the degree of
specialization of any single facility remains restricted within
well-defined boundaries.

(b) Because of this size limit, the access tu the number
of software resources is again limited. Computer manufacturers
alleviate this problem by providing a set of *software packages"
that are found to be useful ir many applicaticns. But this
approach not only limits the user to the facilities of a singie
manufacturer, but often to the type of hardware available to him

from that manufacturer.




(c) [t is iw,ortant that the sharing of resources not be
‘cumbered with time delavs (including those associated with
tance). Users separated by great distances but having
<. 1lar goals in common need to stay directly abreast with the

aevelopments in their particular areas of interest.

It was such considerations as the above that have led to
the interest in and the development of computer pnetworks. By
linking tcgether many computers so that the resources of each
are readily available from every other site, the number of
resources available to any individual user is immediately
increased. By making ea:h resource potentially available to
this widely exparnded set of users, the economies of scale b. 'in
to make specializatinn within =»7ch. Finally the linkage o1
computers provides a communication medium among users that will
allow the necessary interaction that forms the basis of softwara
sharing.

A primitive computer network appears to the user as a
collection of distinct computing resovrces (each wiin its own
set of nuances) linked together through some communication
medium. Use of foreign rescurces requires familiarity with
foreign software procedures as well as with the mechanics of
gaining access to these resources. By contrast, it i{s desirable
that foreign rescurces appear as a logical extension of each

user's computing environment. This memo describes the design




and implementatior of a software facility that will allow the
users of the MIT Project MAC Dynamic Nodeling System [1] to
consider the retrieval component of the Computer Corporation of
America Datacomputer [2, 3] as a logical extension of the DMS
Muddle environment {4]. In particular it wili allow the users
at HIT-DMS to:

(a) ignor> the management of network cornections to the
ffjatacomputer;

(b} ignore the managerent of inter-process control of
the Datacomputer;

(c) form retrieval requests from any database at the
Datacomputer using Muddle syntcx, translating from that syntax
into the Datalanguage code that the Datacomputer requires for

retrieval.

This facility follows upon similar efforts in the past,
but it is far superior to them in terms of generality,
programming consistency, and adequacy of Datalanguage code
yenerated.

This incorporation of the vatacorputer into the Muddle
environment not cnly is desirable from tae point of view of the
user at MIT-DMS (since it accepts syntax that he is familar
with), but also for the general network user: it is more
convenient t- ;-ogram the Datacomputer with this facility;

jurthermora the addition of the ®*front-end" processing power of




e iz

Muddle to the Datacomputer provides tc the network user a

facility in its own right that is unique to the network.

CUTLINE

Chapter I dascribes the characterisiics of the ARFA
network and the type of problems that one faces when attempting
to link resources within that network. Chapter Il discusses the
two resources that are to be linked together (Muddle and the
Datacomputer) and the syntactic and semantic characteristics of
each. The translation system 15 then discussed in full in the
third chapter, with examples and scenarios included; comparison
with previous systems is made.  Finally Chapter IV comciudes the
mem? and gives some suggestions for further development of such

a facil.ty




1. THE ARPANET

Undoubtedly the mozt .wihitious effort being made in the
area of computer networks is with the Advanced Research Projects
Agency Computer Communication Network (ARPANE(). This
geographically distribuved network, originally iinking some
twenty computers when it first becime operational ir 1970,
currently supports well over 40 such hosts spanning the distance
from Hawaii, across continental United States, to Lendon,
tngland. 1Its chief characteristic (as.de from its geographical
di<t,ibution) is thact it connects widely differing computer
systems which share in comacn only the cupability to support
local multiprogramming.

The ARPANET interconnects a multitude of sites, each
site consisting of a maximum of four computer systems and one
communication computer (IMP). 1Yhe IMPs nf the network (each
linked to a maximum of five others) provide the necessary
standardization and in general are responsible for message
traffic control across the network. An IMP also forms the
interface between eac. ~° the computer systems and the network
as a whole.

Standardization throughout the network is also provided
by a seri- of layered protocols, i.e. a set of agreements
between different processes as to the format through which they
are to locate, synchronize, and exchange information. Currently

the ARPANET supports three levels of protocols:




10

{a) bottom-level INP-INP and HOST- IMP protocols to
manage the flow ¢  information 2crass the netwerk (i.e. comtrol,
routing, etc.) (5, 61;

(b) a HOST-HOST protocol for the creation of v'-tual
grocess-process connections between processes residing on
different hosts [7];

(c) function-oriented process-process protocols to
support specific tasks {such as the "Telnaet protocol,” [8] "fils
transfer protocol (FTP),* [9] and the "remote-job entry

protocol® [10]).

It is the nroblems associated with the last s&t of
protocols that concern us here. In particular, if remote
facilities are ever to be viewed a- a virtual extension of each
host on the network, this set i protocols will have to he
handled automatically hy communicating procasses at the two
remote sites, with the user unaware of their existence. The
implementation of such a facility, in which a program as opposed
to a human user is directly manipulating a foreign service,
brings with it its own particular nroblems. J3pecifically, for
most time-shareq <omputers, the set of respensaes generated by
the system assume a human user at tne other end who will use his
own intelligence to act upon the responses he has received.
Responses usually are codad in natural language (e.g. "xyz

loading™), are often unsynchronized (e.g. "system goino down"),




ar. cften asscciated with the nuances of particular hosts
{prompt characters, atc.).

The approach to thc solution of this problem has been
the adoption of what might be termed the user-serve: saradigm:
tae server site passively accepting commands f7us the user and
type-coding its responses to inform the user of the state taat
it is currently ir, to provide him with necessary informational
messages that he ary wisk to act upon, and to informs him when
errors have nccurred (and if possible their severity so that
_pypropriate action might be taken). The FTF protocol is an
example of tho aspliceticr of such a paradigm, and we shall sae
thi t the Datacomputer, by using this paradigm, allows us to

incc-purate it as a virtual extension of a Muddls procs

= -uudla pi G8IS.




12

o

ot
'—4
len

T™C SYSTENS

THE DATACOMPUTER

The Datacomputar is an informa.ion storage and retrieval
service operated by the Computer Corporation cf America to serve
the gereral ARPANET comaunity. Designed eventually to yrovide
over a trillion bits of storage onlina, this developing systewm
is planned to become oue of the mafnr stcres of inforwation for
the network.

The Datacomputer is particularly suited for the
management of highly structured information such.as that found
in transportation resarvation schadules cr weather databases,
where the structure o, *the information is equally as important
as its content. To the staggering amount of storayge capacity is
added the capability to rapidly retrieve subsets of the stored
gata according to eivher its strurcural orgenization or its
content.

The Datacomputer is purely a storage device with no
"front-end” processing capabilities (beyond the retrieval of
information). This is a disadvantage, since interest in
structured data often goes beyond the inajvidual items and t.
the aggregate; we speak of "batting averages," “"tota] iays of
~urshine,” "per cent of time up," evc. Unless such values (1i.e.
average, t:tal, per cent) are explicitly stored in the databass,

the user wust rely on anotker processing facility in order to




™

13

arrive at these. Ir short the Datacomputcr iacks a front-end
statistical package.

Information at the Dztacomputer is stored in a
hierarchical structure. Central to the ‘inderstanding of this
structure is the cotion of a "container.® Fig. ] shows a
typical container structure of a hypothetical database
roncerning MIT's Project MAC. Fig. 2 snows the actual

realization of this description in a Datacomputer file.




14

MAC

P o R Rk kT

—— — — — - GRS S T G S G SR S e S S SRME e G S — T — — - ——— N — A — — — —— ——— —

| o o e o e —— e — L e S —— . Mow — G — — — —— —— — — — — . — —— —o—
) .
[ ] [ o o meme S G S S GRS G S S e W e o— I e m o w— — — —— — — — —— o— . — 1 ]
] ) [} 1] [] )
) ] I o o o—— — — —— — — —— oy o—— (] ] I o cmme m—— — — —— —— — — —— ] []
] [} . [} [} [ [ T
L] (] [ U o ome m— ——— —— —— o o—— ' . ) L] 1 o oo o e o o— - o wm— ] (] [
[] ] ' ] R ] ] ] [ T B}
(] ] ' ] [ T ] [ ] [ I
] ' § ' b o b L I T B | ] [ [ ' - b oL e A I R N |
' (] [ i ® i ' [ B B | ' [ ' [ ] t [ R R B |
] ] ] [ (] » ' [ B B | ] ' 1 ] ' ’ [ R R T |
] ' L] ] : ] [ [ N T | ] ' 3 ] [] ] [ T T B |
' ] ' i ' ] ] [ B | ' ' ) ' ' ' [ T T B |
L) ] ' ] 1 - M I o= ) ' ’ ] ) ) 1) t ) “ LI | ) ] ) ]
i t ' (] L ] ] ] [ T |
’ ' i ' [} . ' [] ) [} ] ’ *
] ' ' ] V ow— b oe— ' ] ' [ | Ve
] ' ] ] ] ] [ ] LI T R | e (] ] (] [} W [ T T T )
] [} 3 Vs ¢ ] - [ B ) ] ] [ S ] 3 - (I N I |
. [] ] ] i . «C [ | ¢ [] [] ] [] [] - ¢ [ R T S |
. ] ' t ] ] - [ N ] ] ] ’ v . | L] [ I T T T )
] ' ' D S B | [%- IR Y N I | ] ' 2 e— ) (7 T T R T T R |
’ ] [ = ] [ ] v [ % ] (O T |
. [ 7 B B~ < | [] . ' I 7> TR < ] [ [
. 100 1 e | e e o v - —— — (] (] [ S5 T I ¥ ] - —— a— - w——— ] (] ]
[] [ < ] ] ) vV o« (] [] )
1 [ = D e o —— —— ——— — — o— — ) 4 1 LA 1 e — —— ——— —— — —a—— (] ’
] ' [ ] [
] ' (] ] [
L] ] T o cw— o— — — — — — —r— —— [] ] | o —a— - — —— —— — — o— 1] ]
' [ ' [ [ ' (|
' ' ' ) o e o — ————— )} ) ] ) I e e o o ————— — ) )}
] ] ' [ [ N | ' ] 3 O T T |
[ ] ] ' [ T [ ] ] [ T
[ [ [ ' b — P R L L L L ] ] i - R T T T S T
) (] ' ' ' i KA} ' t ] ] . (] ) 3 ) e ! ] ] ' ] ]
) (] ’ ] Z 0 ' << [ ] ] ) ) [] .M [ (] - [ [] ' ] ]
] ’ i v” ' ' =gt (T | ] ) [ . ' - (O T R R
) [] ' LIS B ) ' - . [ ] ] ) ] [¥S I | ) - 1 [] [] ] 1
' (] ) - V) ot e ' ] [ [} [} e | e ) V) 4 o} ] ) ]
L] L] i . 1 ) 1 ] ] 1] " ] 1] ]
] ' ' ‘ LI T | ] [ ' [ T
' 1 ] ' I om— b e— . + ' ) 1 1 — ) e ] ' ] ]
[} ' ' ' ' ' [*S I [ R ) [ ] ' ' ] w [ T S )
[] ' DI I *% ] ' 0 (I ] ’ [] (I el I S B | ] Mt [ 2 N R R |
[] (7~ A ' ' - ' ’ P . [ 7 T B SN T - i | (] - (] H ) ] .
) LI e T B M ‘ ' ¢ ' (I B B} [ el BT S B | ] | [ N T T |
[ [ A T =~ T B~ N ] [ S R} 1 3 . I S T == T - . I | [ 7 T R} [] 1l ] [
-— [IENVS B m ] ' ) 1 [ICS R s T | : " i [
wl o [ =T | ' [ ] a0 (I T T |
= ) DD M) ) e e e e o——— — ] ] . [ B T 7 B B et — —— ] [ I
= (I I} : ' LI O | [ ] '
o I ) 1 e e e o - e —— —— e — | N P ) ) o e e e e o e o e m— e —— ) i ]
[ 7 I I R | B - ) ' (]
CL 1| & ) wnn o o o o ae — e —— — o —— o — W | e o e m——— — — — — — o — o | ]
[CS I} ]
Ol | o o o e e —— —— ——— — — — — — — —— — — - —— ———— —— — — — o — o — o}

— e . — — —— — — — —— — — —— — — ——— ——— > ————— —— — — — — O —— s —— ——— —

A container structure

1:

FloUx:




15

FILE MAC LIST
PERSONNEL STRUCT
Al STRUCT
STUDENTS LIST (4D)
STUDENT STRUCT
NAME STR (10)
YEAR STR {2)
STATE IR (10)
SALARY STR (3}
END
FACS LIST (" ¢V
FAC STRUCLT
NAME TR (10)
RANK 317 (10)
STATE STR (10)
SALARY STR (3)

(92l
(=]

N
END

ML STRUC

STUDENTS LIST (40)
STUDENT STRUCT

NAME STR (10)
YEAR STR (2)
STATE STR (10)
SALARY STR (3)

o

m™m
o

N
FACS LIST (20)

FAC STRUCT
NAME STR (10)
RANK 5TR (10)
STATE STR (10)
SALARY STR (3)

FIGURE 2: A Datacomputer fjle description




TR e T T

In fig. 2 we note that the centainers come in three
types: STRing, STRUCTure. and LIST. An STR contains a fixed
length string of ASCII characters {the lei ;i of the string of
characters is specified inside the parentheses following tne
STR). Currently the Catacomputei will score only fixed length
ASCIT sirings, but it will eventually support other types of
da‘a.

A LIST contsins oiher containers of fuv L 7,
description. Thus a list description of the form:

HOSTS LIST

HOST STR (3)
will contain a 1ist of host numbers.

A STRUCT contains ¢ “er containers but not necessarily
of identical dzscription. ~ STRUCT is useful in making logical
connections between items in a database as well as providing a
naming mechanism (the two concepts aie of course interrelated).

All the above is a reflection of information
organization cf a file, not of the file itself. Conceptually we
may think of the following file:

BALLPLAYERS LI1ST

BALLPLAYER STRUCT
NAME STR (15)

BATTING -AVERAGE SIR (3)
END

as bein~ a 1ist of ballpiayers and their associated batting
averages. An entry in such a list (e.g. * Babe Ruth320*)
would be refc.red to as a list member while each field in the

entry {(i{.e. the name field (v.*be Ruth) and tne batting average




L sl

W‘W

17

fi~1d (320)) are referred %o as list member elements.

The basic statement used for retrieval by content from
the batacomputer is the FOR statement. Lagically.‘,eaking, the
FfOR statement is a universal quantifier cver tha list-membars of
a list:

V(X € LISTX®, P(X)
where P(x) is a set of connected predicates th." <ach list
member must satisfy before being added to an cutput list. The
predicates that the Datacomputer understands are EQ (equa’ or
identity), NE (not equal or not identity,, LT (less than), LE
(less than or equal o), GI (greater than), and'gg {greater than
or equal to). The iogical connectives that it recognizes are
AND, OR, and NOY.

The FOR statement in reality is a bit more complic.ated
then the above. Specifically, a user programsirg in
Datalenguag: nmust explicitly descrive the format of the output
1ist, which for efficiency should match the list-members that
are output. Additionally a user aay specify which STRs or
STRUCTs within a list he wishes to see froa each list-member
that satisfies thc given predicate. For example, we may wish to
krow the names of the ballplayers who have a batting average
greater than 300, but w2 may not be interested in seeing the

batting average itself; in totality the Datalanguage program for

such a request would take the form:




w m Ly Ll e L

18

(k. 2°E OUTPUT PORT LIST
MM TR (15)

FOR OUTPUT.MOM, BALLPLAYERS.BALLPLAYER
WiTH BATTING-AVERAGE G1 ‘308’

NCM=NAME ;
END;

The first two lines above would create an appropriate output
port with only one field (the name field to be returnad); note
that the names that are given to the different containers need
not match the names from the file “hat ara to be retrieved. The
last three lines effectively say: for every list-member of the

baliplayers list with batting average elewent greater than 100,

add the NAME element to the output iist QUTPUT.

The Huddle programming language is a direct outgrowth of
LISP. It was designed by members of the NIT Artificial
Intelligence Laboratory and the Programming Techinclsgy Divi<ion
of MIT Project AAC ac an envirgament wichin ~hich PLANNER end
Planner-like languages might run. 1Its chiaf advantages over
LI{SP are more data types, more readable syntax, ease of
extensibility, network interfacing primitives, and a base for
advanced graphics work.

Muddle has been running at MIT-DM§ for the past three
years. During this period it has beern continualiy augwenied;
this process continues as new areas of reswarch are identified

and explored.




————

19

Beyond the Pase features of MLddle, the DRS
implementation provides access tg a gencral dynamically-loadable
"Muddle Lidbrary.® This iibrary consists of a sat of fuictjons
and globai data which Users may acceas in building up more
complex programs out of other users' previous work. Within this
library are such items as a general context-free parser for BNF
grammars and a graphics package for display consoles. A Muddle
compiler is alsg implemented in order to speed the processing of

debugged code.




20

111. THE TRANSLATION SV<:EM

The translation system (MDC-Programser, or HDC for
short) is capable cf formulating retrieval requests for an
arbitrary database at the Datacomputer. HDC must be mode aware
of the format of each database st the Datacomputer from which a
user may want to retrieve data. This is done by creating a file
containing a model {description) of the rarticular Datacomputer
file's structure. This model is creat-d and stored at the
Dynamic Mudeling System. A user who wishes to use the retrieval
system need only identify to it the local DMS file where the
datahase model is stored. The model encompasses, in addition to
all the information found in a Datacomnuter fiie description, a
few other items which are used to provide a more convenient user
interface. The process of creating the model file is relatively
easy and straightforward, and it need only be done once for euch
new Datacomputer database from which we wish to retrieye
information.  Appendix ] contains the format of such a mcdel
along with a sample model file.

Given that a Datacomputer file and its corresponding DKS
model file exist, MDC-Programmer when loaded will connect to the
Datacomputer (using the standard network Initial Connection
Protocol [11]), perform the LOGIN for the current user, and open
the appropriate file for reading. If successful in all three,
MDC will build a series of functions bearing the simple names of

all the containers in the Datacouputer file model.




21

The functions that are available to the user (beyond the
primitives of Mudd.e and any furctions that he 2ay have defined
or used from the library) are these:

(a) A set of functions bearing the .imple names of &ll the
containers.  These functions re used to create the pradicate
that the output list members must satisfy.

(b, A series of functions that move a peinter inside the
medel of the database; the position of the pointer is crucial in
determining what actions the set of functions in (a) are to
perform. The functions that manipulate the pointer are shown
here in muddle syntax:

{PTOP> ;"Position the pointer at _op of model."

<R> ;"Move pointer one position to the right.*

W ; "Move pointér one position to the left.®

<DR> ;"Move pointer down one level to the right.*

L> ;"Move pointer down one level to the left."”

<UR> ;"Move pointer up one level to the right.*®

<UL ;"Move pointer up one level to the left."”

(c) °~ REQUEST function that 15 used to specify the associated
LIST member elements that are to he returned for each LIST
member satisfying the predicate.

(d) An EXECUTE command that will retutn to he user 3 Muddle
channel from which the information that has bee. retrieved is to
be read. The EXECUTE command alone actually interacts with the

Datacomputer. It starts a compilation process that generates




22

Datalanquage code according to the specificatiens made by the
above sets of functions, transwits that code to the
Datacomputer, and returns a channel on which the requasted data
is waiting to be read.

(e) A set of "convenience commands” which allow the user to
enter different modes, specify a change of file from the one
currently being processed, display the substructurc that the
pointer points to, display or suposress the set of Datacomputer

control responses, atc.

It should be noted that the position of the pointer
determines the actions to La taken by the various fur~tions in
the set (a) above. Application of one of the functions will
send the MDC-Programmer through an exhaustive ssarch of that
part of the file model currently at the pointer. Th2 search
restricts the values of the data returned frcm each container
bearing the name of the function to the values specified .in the
aryument of the fur~tion. For example, the application of the
function:

(STATE ("MASS")>
for a file with the description of that in figure 3 will have
the following results depending on whether the pointer is at
ptrl, ptr2, or ptr3:
() If at ptrl, this requires all the values of the field

ofATE within the list MAC to be " HASS? (the padding is




VW T TR, R T T v T

23

necessary oecause the data is stored in fixed length fields;
MDC-Programmer will pad appropriately for the user). This would
be used for exumpls in & requesi such as "Which people at
Project Mac come from Massachusetts?®

{b) If at ptr2, this requires all the valucs of the ficld
STATE within the Al group to be * KASS®, as in "Which
people from the Al group are from Massachusetts?®

{c) If at ptr3, this requires all the values of the field

STATE for the students within the Al group to be Massacnusetts.




2A

FILE MAC LIST

PERSONNEL STRUCT (zzzptrl
Al STRUCT (zzzptr2
STUDENTS LISY (40) <(=z=ptrd

STUDENT STRUCT
NAME STR (1
YEAR STR (2
STATE SIR (10)
SALARY STR (3)
END
FACS LIST (20}
FAC STRUCT
NAMF STR (10)
RANK STR (10)
STATE STR (10)
SALAKY STk (3)
END

0)
)

END
ML STRUCT
STUDENTS LIST {40)
STUDENT STRUCT

0)
.
}

STATE STR (10)
SALARY TR (3)

END

FACS LIST (20)

FAC STRUCT
NANE STR {10)
RANK STR (10)
STATE STR (10}
SALARY STR (3)

(a4}
=
(=]

l

END

END

- FIGURE 3: A Datacomputer file description with pointers




5

The actions of these functions also depend or thu lype
of container that the function name refers to {the containers
being the ones unambiguously located by the above procedure).

In the pointer examples, all the containers were STRs and the
action taken was as described. However if the container turns
out to be a STRUCT, the arguments of the function are passed (in
nrder) to each container within the STRUCT. This procedure is

recursive, allowing STRUCTs to be embedded within other STRIICTs.

For the description in fig. 2, a~ application of the function
(STUDewT ({"GOHN®Y("73%))>
{< equivalent to the application of the functions
CNAME (*JOHN"}>
CYEAR {"73*)>
Note that any previous statement about other fields that
place restrictions on the LIST members that are to be returned
remain unaffected. If we wished to specify those students named
John with salaries equal to 500 {irrespective of their YEAR or
STATE), this would be done in the following manner by using a
null list in the position of the YEAR and STATE fields:
<STUDENT ({*JOHN")(){)(500))>
If the function name refers to a LIST, the arguments are
passed down again as with STRUCT, but this time to the one
(there can be only one) container that the list encloses.
Strictly speaking, functions bearing the names of LISTs

and STRUCTs are not necessary. However, they are important,




26

because it is in terms of these containers (es well as the STRs)
that the user thinks about his data; they provide an additional
convenience of maki.ag one function call instead of several; and
finally they allow the user to rerolve simple name ambiguity
without moving the position of the pointer.

The set of container name functions can also take
arguments involving the predicates that the Datacoaruter
understands (in the above examples the implicit predicate was
£EQ), linked together by the connective 'CR'. Thus applicu.ion
¢ *he foliowing function is acceptable:

STURINT (("JOHN™ OR "JACK*)

(LT ®73" OR GE *75"))»
This would returr *hose students named Jack or Johin who
graduated before 73 or who will graduate after 74.

The REQUEST command is used tn znecify which elements of
each LIST-membor from the output list are to be returned. The
format of the REQUEST command is as follows:

(REQUEST ¢name? <name> ...>
where <name? refers to the rames of the containers that are to
be returned. These simple names are resolved in terms of the
description pointer as was done with the container name
functions. If <name> refers unambiguously to an §iR, the STR
values are returned; if <¢name> refers unambiguously to a STRUCT,
ali slements within that STRUCT are returned; finally if ¢nase?

refers unambiguously to a LIST, all the elements of each list




_—— e

27

member are returned.

The EXECUTE coumand, applied simply as

CEXECUTE>

starts the actual retrieval process. This process is a two pass
algorithm. The first pass builds an appropriate port
description for output, and the second pass uses that
description in the formulation of an appropriate Dat..anguage
request statement. Both passes are recursive, alleowing file
models to have arbitrary embedding of containers and thus
capable of processing any file that covld conceivably be stoied

at the Datacomputer (for version ¢/9).

PROCESS-PROCESS COMMUNI(ATION

Communication with the Datacomputer is done through the
user-server paradigm discussed earlier in this memo. The
Datacomputer will sit passively, interpreting Datalanguage
commands and sending out information to the user site specifying
the actions that re being taken as a result of these commands.
This set of infermaticn messages is sent out one line at a timé.
The first five characters of a responce line are a message code
intended to be used by a foreign program, while the remainder of
the line is the natural language equivalent of this code for
human interpretation.

The class of responses sent by the Davacomputer f.sll

bronadly into three areas:




28

(a) informational messages

(b) sv. > ronization messages

(c) error messages

The first character of zach response line determines the

class witiin uhich each message falls. Error messages are
further subcategorized according to severity, so that the user
site may take appropriate action. Typical synchronization
messages are "waiting for datalanguage input,® °"waiting for
data,"” et:. Some informational messages are *adding node to
table,” "execution complete," etc. Error messages can be aither
compilation or execution errors. In the latter case, a serfes
of messages will follow, describing the actions taken. These
actions may vary from "temporary ports flushed® to "crashing
user job." Fach error message is then followed by a
synchronization message which will allow the two processes to
get back iato step after having lost control through an

uneypected avent.

COMPARISON WITH PREVIOUS SYSTEMS

Two e:forts ziong similar lines preceded this one.
These were "UKRET [12] written by the author, and SHART written
by Hal furray at Computer Corporation of America.

Every twenty minutes, a program at the Dynamic Modeling
System wakes up to record ths statuses of the diffesrent hosts

across the network. The program collects this information and




rmr TP AT, Ar

29

stores it in the SURVEY database at the Datacomputer. This
information proved to be of interest to the general network
community, so a task-specific Muddle-to-Datalanguage programmer
was written for retrieving this information. It was the success
and usefulness of this facility that brought about
considerations for a general! huddle-to-Datalanguage programmer.

SAART was a prompt-response system for generating
catalanguage code from the set of responses @ade by the user.
Tuere are two chief difficulties with the whole concept of a
prompt-response system. One is that as the number of containers
in a file tend to inciease, the system becomes an increasingly
more difficuit interface for the user, as he may have to De
prompted uniecessaerily for a large number of fields. The second
difficulty is that the prompt-response is not a consiscent
embecding of the system within a larger software eanronnent;
such an approach fragmentizes resources as opposed to unifying
them into more powerful facilities.

SMART is not a fully general system. Specificaliy it
will not handle any files with embedded 1lists within them. Its
usefulness is thus restricted to a very small subset of the
potentially rich information structures that the Datacomputer is
capable of handling. In addition. waking SMART intelligent
enough to retrieve information from a new file description
requires about three days of system programmer time. MDC-

Prograrmmer improves this performance in two respects. (!) The




30

task of acquiring the capabilities tc process a nex file does
not require the intervention of a systems programmer. It is
simple enough so that any user who knows the file s“ructure can
create the model file. (2) This process for creating the file

model takes on the order of minutes as opposed to days.

SCENARIO

A simple scenario of MDC-Programmer in use is cutlined
below. It is & transcript of an actual session made at the
Dynamic Modeling System. In this session, rotriuva) of
information is made from two files: PEOPLE as given in the
example database in appendix 1, and SURVEY as given in figure 4.
The former file was created for cesting purposas whareas the
latter is a "real® fils which is accessad quite often to get
information regarding ‘.he past performance of various hosts on
the network. The underlined lines below represent those that
have been typed in by the user; the indented lines have been
included for explanatory purposes; the lines beginning with a
period or semi-colon are responies from the Datacomputer; all
other Jines are what Muddle prints or returns as a result of

function application.

LISTENING-AT-LEVEL 1| PROCESS 1

Hessage from Muddle indicating it is listening for commands.

(FLOAD "SAB;N-DC">%




31

Above funccion will load MDC (the $ sign typed in by the
user starts the evaluaticn by kuddle).

Muddle to Datalanguage Translator

Please type name of lozal file containing
Datacopputer file moiel:

"SAB;PEOPLE FILE"S

MDC greeting message followaed by a string typed in by the
user :dentifying the jathname of the file containing the
model of the Datacomputer file PEOPLE.

;J150 21-05-74 0034:43 FCRUN: HERE WE GO
;J200 21-05-74 0034:43 RHRUN: READY FOR REQUES™
.12:9 2i-05-74 0034:43 LAGC: READING NEW DL BUIFER

Datacomputer greeting message; it is now ready to receive
commands---first the user must be logged in.

LOGIN NAME FLEASE:
Typed out by MDC tc prompt user for login name.

"HIT.DFS.SURVEY"S

;J209 21-05-74 0035:06 RHRUM: EXECUTION CMPLETE
;J200 21-05-74 0035:10 RERUN: READY FOR RO OWEST
L1210 21-05-74 0635:10 LAGC: REAu."G NEW DL BUFFER

Login is completed. Notr that the user is .:rrently in
UNSOAK mode, i.e. the responses of the Datacomputer are
displayed at his console. He can vary thts mode (to one in
which the Datacomputer resnonses are not displayed) by
application of the function SOAK.

;U000 21-05-74 0075:25 DHKD: ADDING PUNCTUATION
;J209 21-05-74 0035:28 RHRUN: EXECU):ON COMPLETE
;J200 21-05-74 0035:28 RHRUN: READY FOR RESUEST
.1210 21-05-74 0035:28 LAGC: READING Ntw U BUFFER
"DONE"

The four Datacomputer lines are in response \c the opening
of the PEOPLE file; the open was successful; the las¢ line
was returned by Muddle indicating that loading of MDC has

been completed.

CCONTEXTD>S
CONTEXT is a function which will show the file ®wodel to the

user below the point where his pointer is currently located.
Immediately following loading. the pointer will always point




32

to the top of the model. After pr *ing the model, CONTEXT
wili then return the patiname of the ,ointer.

(PEOPLE
LIST
()
(PERSON
STRUCT
()
(NAME STR ())
{ADDRESS STR ())
(CITY STR ())
(STATE STR ())
(ZIP STR ())
(DEPENDENTS
LIST
()
(DEPEMDENT STRUCT () (NAME STR ()) (AGE STR ())))))
*PEOPLE"

CTERSEDS
*DONE*

Enters the user into terse mode; i.e. after applying the
container name functions or the REQUEST function or the
EXZCUTE function, the model will not be printed but rather
only the pointer pathname will be returned.

CREQUEST /MANEY’S
*PEOPLE"

Request is made for all names within the file; since the
pointer is currently at the top or the model, all tha namas
of the children as well as the adults will be returned.

(SET CH <EXECUTE>>3

;J209 21-05-74 0046:07 RHRUN: EXECUTION COMPLETE
;J200 21-05-74 0046:07 RHRUN: READY FOR REQUEST
L1210 21-05-74 0046:C8 LAGC: RtADING NEW DL BUFFER

This set of Datacomputer responses is wade in response to
the creation of an output port. In reality the entire
Datalanguage program has been to the Datacomputer, but
resynchronization occurs at the naxt request. The fol.owing
code was sent to the Datacomputer:

"CREATE L2 TEMP PORT LIST
ST1 STRUCT
s2 STR {15)
L1 LIST (0, 2), Da'%"




33

S1 STR(15)

(o)
L=

N

I

followed by the request:

® FOR 1.2.3T1,PEOPLE.PERSON
S2=NAME;
FOR L1.S1,PEOPLE.PERSON.DEPENDENTS.DEPENDENT
S1=NAME ;
END;
END;"

o

and Muddle returns:

#CHANNEL [4 "READ™ -1 -1 "NET® 0 56£8 13893763 "NET" 4127 4118
23748359936 <ERKOR END-OF-FILE!-ERRORS> 0 0 0 0 10 **]

the channel returned by the EXECUTE command.

CFILECOPY .CH .OUTCHAN>S

FILECOPY is a Muddle function which copies data from one
channel to another; in this case it is copying the data

coming from the Datacomputer tc the user conscle output

channel, giving:

BILL STORM
ALICE FALL JILL FALL
SCOTT SUMMER HARY SUMNER

138

The above are the names returned; the **" was specified in
the generated Datalanguage code to separate the occurrences
of inner list members. In this manner we know that Jill
Fall 1s a dependent and that Mary Summer is a dependent.
The 138 at the end is a count of the number of characters
that have been received over the channel; it {3 returned by
FILECOPY.  The next request will be to ask for the address
of Scott Summer. Here however things will be done in SOAK
mode so that the Datacomputer responses will no longer
appear.

CSOAK>S
"DONE"

(NAME ("SCOTT SUMMER")>$
"PEOPLL"

(REQUEST (STATE ADDRESS)>$
"PEOPLE"




TP TR S— ] ——

{SET CH <EXECUTE>)S

#CHANNEL [4 "READ" -1 -1 °NET® 0 6512 13893763 "NET" 4127 4118
23748359936 <ERRGR END-OF-FILE'-ERRORS> 0 0 ¢ 0 10 **]

CFILECOPY .CH .OUTCHANDS
MA 9 BOW STREET
23

9 BOW STRLET ano MA were found as the address of Scott
Summer in the order requested: first the state, then the
street address. The character count ic apain raturned by
FILECOPY. Note that for these examples we did not need our
pointer functions (primarily because of the simplicity of
the file); performance of these functions is shown below.

CCVAL>S
"PEOPLE"

Clear all values; the file model now looks like it did when

we first loaded MDC.

<DR>$
"PEOPLE . PERSON"

<DR>$
"PEOPLE .PERSON . NAME"

<R_5>8
PEOPLE . PERSON . DEPENDENTS®

CCONTEXT>S
(DEPENDENTS
LIsT
()
(DEPENDENT
STRUC
()
(NAKE STR (}))
(AGE STR ())))
"PEOPLE .PERSON.DEPENDENTS"




(Y74Q1 LIST ()
(LOGTRY STRUCT #FALSE()

(DAY STR () #FALSE() 2 '“8 T T1 31

(MONTH STR () #FALSE() 2 '"0 T T 1 12)

(YEAR STR () #FALSE() 2 '"0 T T 73 74)

(HRAIN STR () #FALSE() ~ '"0 T #FALSE() #FALSE() #FALSE())

(HOST STR () #FALSE() 3 '"0 T T 0 6)

(STATUS STR () #FALSE() 1 #FALSE() #FALSE() T 0 6)

(SOC STR () #FALSE() 3 #FALSE() PFALSE() #FALSE() #FALSE()
#FALSE())

(SCHED STR /% #FALSE() 1 #FALSE() #FALSE() #FALSE() #FALSE()
#FALSE())

(RESTIME STR () #FALSE() 3 '"0 T #FALSE() #FALSE() #FALSE())))

FIGURE 4: SURVEY database model




36

(NEWFILE "SAB;SURViL. FILE")®

A change from the file from which information is to be
retrieved is done by the NEWFILE command; the argument to
the command must be the pathname of the DMS file where the
new Datacomputer file model is stored.

"Y74Q1"

CCONTEXT>S
(Y74Q!
LIST
()
(LOGTRY
STRUCT
()
(DAY STR ())
(MONTH STR ())
(YEAR STR ())
RMIN TR ())
(HOST STR ()}
(STATUS STR ())
(SOC STR ()
(SCHED STR ())
(RESTIME STR ())}))
"Y74Q1"

This survey file contains all the "irvey information for the
first quarter oy 1974.

C(HOST (31)>3
"Y74Q1*

CHRMIN (GT 500 AND LT 600))S
"\74Q1"

CMONTH {1)>3
“V74Q1°

CDAY (LT 4)°%
"Y74Q1"

CREQUEST (LCGTRY)>S
"y74Q1"

(SET CH <EXECUTE>>$
The request was for all the informaticn on host 31 (CCA) for

the time period of 3 o'clock to 6 o'clock from January 1 to
January 3.




PCHANNEL [4 "READ" -1 -1 "NET" 0 7240 13393763 "NET" 4127 4118
23748359936 <ERROR END-OF-FILE'-ERRORS> 0 0 0 0 10 **]

{FILECOPY .CH .OUTCHAN>S
010174051203150012031)
010174053203150012034
010174055203150012031
020%7405100315u012032
0201.,4053003150012038
020174055003150012036
030174251103150612025
030174053103140012000
030174055103150012029

189
The first six characters of each line are the date, followed
by four for the time, three for the host number (031), one
for the status (5=logaer available), three for the socket
(001), one for the schedule {2=unknown), and three for the
response time in tenths of a second.
{CONTEXT>3
(Y74Q1
LIST
()
{LOGTRY
STRUCT
)

(DAY STR (LT 4))

(MONTH STR (1))

(YEAR STR ())

(HRMIN 3TR (GT 500 AND LT 600))
(HOST STR (31))

(STATUS STR ())

{SOC STR {))

{SCHED STR ())

(RESTIME STR ())))

"y74Q!"

The datalanguage code for retrieval ty content in this
example was:

" FOR L1.8T1,Y74Q1.LOGTRY
WITH { DAY EQ '01' OR DAY EQ '02' OR DAY EQ '03') AND
( MONTH EQ '01') AND
( HRMIN GT '0500' AND HRMIN LT '0600') AND
( HOST EQ '031')




38

S1=DAY; S2:MONTH; S3aVEAR; S4=HRMIN;
552HOST; S56=STATUS; S7280C; S83SCHED; S9=RESTINE;
END; *

for a port of description:

"CREATE L1 TEMP PORT LIST
ST1 STRUCT

i STR (2)

Sz STR (2)

$3 STR (2)

s4 STR (4)

$5 STR (3)

6 STR (1)

$7 STR (3)

S8 STR (1)
$9 STR (
END ;"

Finally the session is ended by:

<DIS>$
"Connection to the Datacomputer has heen severed.”




————

39

IV. CONCLUDING REMARKS

MDC has been fully implemented, btut it has yet to be
documented for the general ARPANET community. I believe that
when it is dccumented and put to use, it will prove to be as
useful a programming tool as SURRET was found tc ta, but a far
rore powerful one because of its generality. |

Continuval improvement of the facility must go hand in
hand with the devclopment of the Datacomputer. Version 1/0 of
the Datacomputer is about to be released, and it includes many
features that the former version did not possess. Tne
differences between the two versions however ipdirate that a
major reprogramming of MDC will not be necessary; changes will
need to be made, but to augment the facility as opposed te
completely changing it.

MDC currently provides beth Muddle functious and the
retrieval component of the Datacouputer. A major improvement to
the systen would he the addition of a statistical package.
Rather than have t} 1. package programmed in Muddle, use should
be made of other sites on the network (such as the Muitics
Consistent System) which already possess quitc powerful
statistical packages. Taken together such a system would rerve
as an exemplary model of network resource sharing, while at the
same time provide an opportunity to explore some areas of

network parallel processing.




49

REFERENCES

[1] D. Eastlake, et al. ITS 1.5 Reference Kanual. Memo Number
161A, Artificial Intelligence Laboratory, MIT. July 1969.

[2] Elliot Smith. The Datacomputer, Version 0/9---A User
Manual. Computer Corporation of America, Cambridge, Mass.
August 1373.

{3] Ricnard Winter. Specifications for Datalanguage: Version
0/9. Computer Corpuration of America, Cambridge, Mass.

{4] Greg Pfister. A MWUDDLE Primer. Document SYS.11.01,
Programming Techrology Division, Project MAC, NIT. December
1972.

[5] Specifications for the Interconnection of & HOST and an INP.
Report number 1822, Bolt Beranek and Newman Inc., Cambridge,
Mass.

(6] F. E. neurt, et al. The Interface Message Processor for the
ARPA Computer Network. AFIPS Conf. Proc., volume 35, page
551. Mav 1970.

{7) C. ~. Carr, et al. HOST-HOST Cosmunication Protocol in the
ARPA Na2twork. AFIPS Conf. ?roc., volume 36, page 289. WHay
1970.

[8] T. O'Suilivan, et al. TELNET Protocol. ARPA Network
Information Center Document 6768. May 1971.

[9] A. McKenzie. File Transfer Protocol. NIC Document 14333.

(107 R. Bressler, et al. Remote Job Entry Protocol. NIC
Document 12112. June 1971.

{11] J. Postel. Official Initial Connection Protocol. NIC
Document 7107. June 1971.

(12) Safwan Bengelloun. MUDDLE Survey Data Retrieval Programs.
Documeni SR.10.06, Programming Technology Division, Project
MAC, MIT. January 1974.




41

APPENDI 1: FILE MODELS

The file model used by ADC-Programmer is held ‘~ a

Muddle 1list structure (do not confuse with a Datacomputar LIST).
Each list has its first object as the name of a container and
the second object as the type of th: contziner. The remaining
objects in a list are then dependent on the type of container
that the list represents:

(a) For LISTs the third object is always an empty list.
LISTs will also always have a fourth element which will be a

description list.

(b) For STRUCTs, the third element is either #FALSE() or

specifies the length of a LIST that may immediately enclcse the

STRUCT (this is done only for embedded LISTs). The remaining
objects of a STRUCT will be one or more description lists.

(c) For 5TRs, the third object is always an empty 1. =. The
fourth objert specifies the default value of the field or is a
#FALSE(). The fifth object specifies the fixed length of the
field. The sixth object gives the padding character, if any,
and the seventh gives the direction of the padding (left or
righi). The eighth object states whether the STR is an
inversion key or not; if it is and the STR holds numerical
values, the ninth and tenth objects will hold the maximum and
the minimum value respectively. The eleventh (optivnal) object
performs the same function as STRUCT's third object, but for the

case where lists enclose only a single STR.




42

Following is the model built for the list PECPLE that
was used in the SCENARIO section.

(PEOPLE LIST ()
(PERSON STRUCT #FALSE()
(NAME STR () #FALSE() 15 '" T T #FALSE() #F/LSE())
(ADDRESS STR () #FALSE() 20 '® T #FALSE() #FALSE() #FALSE())
(CITY STR () #FALSE() 10 '™ T #FALSE() #FALSE() #FALSE())
(STATE STR () #FALSE() 2 #FALSE() FFALSE() #FALSE() #FALSE() #FALSE())
(ZIP STR () #FALSE{) 5 #FALSE() #FALSE() #FALSE() ~FALSE(}) #FALSE())
(DEPEMDENTS LIST ()
( DEPENDENT STRUCT 2
(NAME STR () #FALSE() 15 '™ T #FALSE() #FALSE() #FALSE())
(AGE STR () #FALSE() 2 '"0 T #FALSE() #rALSE() #FALSE())))))




4]

APPENDIX Z: PROGRAR ABSTKACTS

The programs comprising MDC reside in the DNS Muddle
Library. Each program in the Library has an Abstract, also in
the Library, that gives nacessary and sufficient information
about the program to allew direct use of the program by cther
programs and to allow maintenance of the Library. This appendix
contains the Abstracts for the MDC package itself and for its
*ports® -- those programs designed to be called from outside the
package, for example from the user's console. For the sake of
brevity, Abstracts for the internal programs are not included
here.

The various parts of an Abstract are named by Muddle
comments {preceded by a semicolon), which briefly describe the
following part. Some parts are in turn made up of parts, in
hierarchical fashion. The hierarchy is defined by the various
brackets used to enclose Muddle objects in the Abstract, and it
is further indicated here by indentation.

Each Abstract is a Muddle vector (enclosed in []) whose
elements and subelements are vectors, strings (enclosed in *),
lists (enclosed in ()), type declarations {enclosed in ()} and
preceded by #DECL}, forms (enclosed in <)), and atomss

(everything else).




44

*Unique-name® “"MDC!-PACKAGE®

"Name" "MDC®

"Author®" ["SAB" "JIL*]

"Object-type" "PACKAGE"

"Contents® [

; "Ports® [ "CONTEXT"™ "NEWFILE"™ "PTOP" "VERBU F®" "TERSE" “"SOAK®"
*UNSOAK®" "CVAL" "CREQUEST® "R"™ “L"™ "DR" "DL" "UL" °*UR"
"REQUEST"® "TIME-CONSTANT" "CON" "DIS® “EXECUTE" *INIT"]

; "Internal-functions” ([*SIMPLE®™ *SIM.-LIFY®" *CDISP® "COMRET*
"CRESTR" "CVALUE" "CREQ* "PATHNAhi “INITVAL" *REQLIST®
"SETVAL" "PAD"™ “EXPAND" "RESOLVE" "/LROLSP" "GEYLL" "GETS"
"GETST" *NEXTS" "STRINGEP* "CRELIST" "CRESTRUC" “"GETLEN"
"MAFISH® "FILIST" "FILISTI" "FILIST2" "CORSTR" °LISTN"
“COMSTRUC" "COMLIST" "RTIME" "NETINT™ *ICP" “CONNECT®
“GETCODE" "DCERR™ "PCON®" "EXEC"]

; "Data-ports® [

; "Data-ports-global® []

. "Data-ports-local" [#DECL ((TIME.CONSTANT) FIX)
"TIME.CONSTANT determines how long the ICP should wait for a
response from the Datacomputer."] ]

; "Internal-dsta® [] ]

; “Category” [*NETWORK™]

: "Descriptor® ["NETWORK ' "DATALANGUAGE" °"DATACOMPUTER®™ "RETRIEVAL®"]

; "External-interactions® [

; "Side-effect® ["1/0" "IDENTIFIER" "DATA" °INTERRUPTS®]

. "/ariables® {

; "Glooal® [ ‘
; "Setg'd" [#DECL ((NIN NOUT) C(OR CHANNEL FALSE>)]
: "Used® ([#DECL ((NIN NOUT) COR CHANNEL FALSE> (OUTCHAN) CHANNEL)]]
: "Locai® [
; "Set" [#DECL (
(DFD DPTR DSTLST FD NUMLIST PTR SIMPLENAME SUBLIST? SUBVALT STLST) LiST
(HIDE SOAK LC N SC STC SYNCF TIME.CONSTANT) FIf
(DLCODE KESS PORTDESC PORTN S1 TEK1) STRING)]
; "Used™ [#DECL (
(DFD DPTR DSTLST FD NUMLIST PYR SIMPLENAME STLST) LIST
(ARGS) C(SPECIAL ATOH)
(HIDE LLC N SC SOAK STC SYNCF TIME.CONSTANT) FIX
(DLCODE MESS PORTDESC PORTN S1 TEM1) STRING (AC1 DONE) ACTIVATION
(CHICP) CSPECIAL COR CHANMEL FALSE>)
{ INCHAN) <OR CHANNEL FALSE>)]
; "Special® [] ] ]
; "Functions called® [PPRINT RTIME]
; "Environment® [
; "Raquired® [
; "Puring® []
; *Afcert []11]]
; "Locaticn" “LIBRARY"
; "Reference” ["B.S.E.E. thesis, S. A. Bengelloun, June 1974"]

e % we we we P




Sl P we we

45

"Description® ["This is a general retrieval program for the
Datacomputer. The user manipulates a user-built file model to form
a request in Datalanguage. REQUEST then sends the Datalanguage
program to the Datacomputer. The information it retrieves can be
printed on the user's console or written into a file."]}

"Argument® []

"Example® ["See scenaric in thesis.®]

"Notes® []




®e =5 ®s we wo we we we ™

46

"Unique-name® “CONTEXT!-MDC*
"Name"® “CONTEXT"
"Author™ “SAB"
"0Object-type® “FUNCTION®
"Contents” []
"Category" ["UTILITY"]
"Descriptor® ["CONTEXT" "MODEL®" *POINTER® "OUTPUT"]
"External-interactions® [
; "Side-effect® [{]
; "Variables® [
; "Global”® [}
s "Local® (

; "Set™ [}

; "Used™ ({¢éDECL ((DPTR) LIST)]

i "Special” [] ] ]
; "Functions called® [PATHNAME PPRINT]
; "Environment® {] ]
"Location" “MDC"
"Reference™ ["MPC"}
"Description® ("
CONTEXT displays that porticn of the file medsl which s currently
to the right of the pointer."] ’
"Argument”® [
; "Template" [#DECL ("VALUE® STRING) "returns psthnams of pointor”]
; "Argument-type" []
; "Result-type" [*STRING"] ]
"Example® [(CONTEXT)>]
"Notes” [}




e we ws ws we we M

47

"Unique-name" "NEWFILE!'-MDC*
"Name™ “"NEWFILE"
"Author™ "SAB"
"Object-type® "FUNCTICN®
"Contents® []
"Category" ["DATA-HANDLING"]
"Descriptor™ ["NEW®™ "FILE" "MODEL" °“BINDING® °“CREATION® "FUNCTION"]
"External-interactions® {
; "Side-effect® ["I1/0" "IDENTIFIER" ®DATA"]
; "Variables" [
; "Global" {
; "Setg'd" []
; "Used" [#DECL ((NOUT) <OR CHANNEL FALSE>)] ]
; "Locai" {
. “Set" [#DECL (
(DFD DPTR DSTLST FD PTR SIMPLENAME STLST) LIST}]
: "Used" [#DECL (
(DFD DPTR FD PTR SIMPLENAME) LIST (ARGS) <(SPECIAL ATOM)>)]

; "Special" [#DECL ((ARGS) ATOM)] ] ]
. "Functions called" ([COMRET SIMPLIFY CDISP]
; "Environment® [] ]
"Location® "MDC"
"Reference® ["MDC"]
“Description® [
Newfile brings in a new file model. It also creates a series of
functions which permit the user to manipulate the file model.
Specifically, each function provides a mechanism for changing the
value of the list which is associated with its name. "]}
"Argument” {
; "Template® [#DECL ("VALUE"™ STRING STRING) "arg is local fi{le name"]
; "Argument-tynpe® ["STRING"]
; "Result-type" "STRING"]
“Example" [
(NEWFILE "“SAB;SURVEY FILE™
"The argument must be the name of a model file. *®
(MONTH (JUN)>
"MONThH is a created function that modifies the field MONTH in SURVEY
FILE. It puts JUN into the list associated with the field MONTH." ]
"Notes" []




[ L.

“"Unigque-npame® "PTOP!-NDC"
"Name" “PTC¢"
"Author® "3SAB"
"Object-type" “FUNCTION®
"Contents’ [)
"Category" [ "PROGRAM-CONTROL"]
"Descriptor® ["TOP" "MODEL™ "GOTO" "PCINTER®]
“External-interactions” [
; "Side-effect™ [}
; "Variables® {
; "Global®* []
; "Local" [

; "Set” [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used® [#DECL ((DFD FD) LIST))

: "Special® []1]]
; "Functions called® [COMRET)
; "Environment® (] ]
"Locazion" *“MDC"
"Reference” ["MDC"]
"Description® ["
This function moves the pointer to the top of the file model."]
"Argument® [
; "Tempiate” [#DECL ("VALUE" STRING) "returns pathname of pointer®]
; "Argument-type® []
; "Result-type® ["STRING"] ]
"Example® [<PTOP)>]
"Notes" [}




we we ws Wwe we ws we ws [

L}

"Unique-name" "VERBOSE!-MDC*®
"Name" "VERBOSE"®
"Author™ "SAB®
"Object-type* "FUNCTION®
"Contents" [}
"Category" ["DISPFLAY"]
"Descriptor® ["CONTEXT®" "POINTER" “"CHANGE® *"OUTPUT®]
"External-interactions® [
; "Side-effect” [}
; "Variables® [

; "Glotal" []

; "Local® [
; "oet"™ [#DECL ((HIDE) FIX)]
. “Used" []

; “Special® (11
; "Functions called"® []
; "Environment® [] ]

. "Location® "MDC"

-

"Reference"” ["MDC"]

"Description” ("

This function causes the program to enter verbose mode.

In this mode the CONTEXT is printed whenever a function returns the
pointer pathname.")

"Argument”* [

; "Template" [#DECL ("VALUE" STRING) ®returns tae string 'DONE'*]
; "Argument-type" []

; "Result-type" ["STRING"] ]

"Exampie” [<VERBOSE>]

"Notes" []




e ®s ®.e e We se we we ™

50

"Unique-name™ “TERSE!-MDC"
“Name® "TERSE"
"Author®" “"SAB"
"Object-type" “FUNCTION"
*Contents® (]
"Category" [*DISPLAY"]
"Descriptor” [“CONTEXT" "POINTER® "CHANGE" "QUTPUT"]
"External-interactions® [
: "Side-effect” (]
, "Variables® [
; "Global® []
; "Local"
: "Set"™ [#DECL ((HIDE) FIX))
. "Used” [
: "Special® (] ] ]
; "Functions called" (]
; "Environment® [) ]
"Location" "MDC*
"Reference” ["MDC"]
"Description” [*"
Terse is the nnposite of verbose. In terss mcde only the pathname
of the pointer is printed "]
"Argument® [
; "Template® [#DECL ("VALUE" STRING) "returns the string °'DONE'"]
; "Argument-type" [
; "Result-type® ["STRING"] ]
“Example™ [<CTERSE>]
"Notes" []




¥+ wa ws ws ws we ws ws

.

51

"Unique-name" "SOAK!-MDC"
"Name" "SOAK"
"Author® *"SAB"
"Object-type® “"FUNCTION®
*Contents™ [
"Category®™ ["DISPLAY*] ,
"Descriptor® ["GUTPUT" "DATACOMPUTER" "RESPONSE® "CONTROL"]
"External-interactions”® [
; "Side-effect” [}
; "Variables" [
; "Global* []

; "Loczl® [
; "Set”™ [#DECL ((SOAK) FIX)]
; "Used® []

; "Special® []] ]
; "Functions called" []
; "Environment” [] ]
"Location™ “"MDC"
"Reference" ["MDC"]
"Description* ["
Invoking SOAK inhibits the printing, on the console, of subsequent
Datacomputer control information sent across the Network
Connections.” ]
"Argument® [
; "Template®™ [#DECL ("VALUE"™ CTRING) "returns the string 'DONE'"]
; "Argument-type® [}
; "Result-type™ ["STRING"] ]
"Example® [<(SOAK>]
"Notes” []




wes we we we wr wr we we ™

52

"Unique-name”™ "UNSOAK!-MDC*
“Name" “UNSOAK"
"Author® "SAB"
"Object-type™ “FUNCTION"
"Contents™ (]
"Category” ["DISPLAY"]
"Descriptor® ["OUTPUT" *DATACOMPUTER" *RESPONSE" "CONTROL"]
“External-interactions® [
; "Side-effact” (]
; "Variables® [

; "Global® [

; "Local” {
; "Set™ [#DECL ((SOAK) FIX)]
; "Used” []

; "Special® []1]]

; "Functions called® {]

; "Environment® [ ] ]

"Location™ *MDC"

"Reference” ["MDC"]

vescription* "
UNSOAK negates SOAK. All the control information sent thereafi-: by
the Datacomputer is printed on the console."]

"Argument”® [

; "Template® ([#DECL ("VALUE" STRING) "returns the string 'DONE'"]
; "Argument-type® []

; "Result-type" ["STRING"] ]

"Fxample® [<UNSOAX)]

*Notes* []




s ws we we we we wo T

53

"Unique-name™ “CVAL!-MDC"
"Name®™ "CVAL"
“Author" "SAE-
"Object-type® "FUNCTION"
"Contents" []
"Categor® [ *DATA-HANDLING"]
"Descripicr® [“CLEAR™ ®INITIALIZATION®" "FIELD" *VALUE" "MODEL"
“CRITERION" "RESTRICTION®]
“Externzl-interactions® [
i "Side-effect” []
; "Variables® {
: "Global" [
; "Local" [

; "Set” []

; "Used" [#DECL ((DPYR) LIST (PTR) LIST)]

; "Special” [] 1]
; "Functions called” [CCMRET CVALUE]
; "Environmeni® [] ]
"Location® "MDC"
"Reference” ["MDC"]
"Description” [*"
CYAL clears all the field values from the file model that were set
by the user with field-named functiors.®)
"Argument" {
; "Template® [#DECL ("VALUE" STRING "OPTIONAL® (OR FALSE LIST> LIST)

“returns pathname of pointer”]

; "Argument-type® | “FALSE* "LIST"]
; "Resuit-type" ["STRING"] }
"Example® [(CVAL> ]
"Notes” [




®s ®ws wr wr we we we w faan ]

54

"linique-name® "CREQUEST!'-MDC*
"Name®" “CREQUEST"
"Author' "SAB"
"Object-type" "FUNCTION"
"Contents” []
"Category” [ “DATA-HANDLING®]
"Descriptor” [“CLEAR"™ "INITIALIZATION® "REQUEST® °*RESULT"]
"External-interactions’ [
; "Side-effect” [
; "Variables" [
; "Global® []
; "Local" [
v "Set® [
; "Used® [#DECL ((DPTR) LIST (PTR) LIST)]
; "Special® []1])
; "Functions .alled* [COMRET CREQ]
; "Environment®” [] ]

. "Location" "MDC"

"Reference® (["MOC"]

"Description® ["CREQUEST clears all user-set REQUEST fields.")

"Argument” [

; "Template® {[#DECL ("VALUt™ STRING "OPTIONAL® (OR FALSE LIST) LIST)
“returns pathrame of the pointer®]

, "Argqument-type®” [“FALSE® °"LIST"]

; "Result ‘ype®™ (["STRIMG"] ]

"Exampie® [

(CREQUEST>

"The optional arguments are used by internal functions.®]

"Notes" []




et we we we me we ws we

55

"Unique-name® "R!'-MDC"
"Name®" "R"
"Author® "SAB"
"Object-type“ "FUNCTION"
"Contents™ (]
"Category” ["DATA-HANDLING"]
"Descripto, ™ [*MOVE® "PCINTER" "RIGHT" "MODEL" "CONTEXT"]
"External-irteractions” [
; "Side-effect” [°DATA"]
; "Variabies® (
; "Global® {]
; "Local” [

; "Set" [#DECL ((DPTR PTR) LIST)]

; "Used® [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special® []]]
; "Functions called® [PATHNAME PPRINT]
; "Environment® [] ]
“Location® “MDC"
"Reference” ["MDC"]
"Description® [*
R moves the pointer tc the right in the file model."]
*Argument”® [
; "Template™ [#DECL (*VALUE" (OR FALSE STRING) “OPTIONAL®" FIX,

*returns pathname ol pointer"]

; "Argument-type® ["FIX"}
; "Result-typc™ ["FALSE" "STRING"] ]
"Example® (<R> "mcves the pointer to the right 1 placs”

(R .FIX> "moves the pointer to the right .FIX places"]

"Notes" []




*s @s we we we we we we P

%6

“"Unique-name™ “L!'-MDC*
"Name® "L"
"Author®™ “SAB"
"Object-type®™ “FUNCTION"
"Contents” {]
"Category” ["DATA-HANDLING"])
"Descriptor®™ ["“HOVE" "POINTER® °"LEFT" "MODEL® °"CONTEXT"]
"External-interactions” [
; "Side-effect®™ ["DATA"]
; *Variables" [
; "Global” []
; "Local" [

; "Set®™ [#DECL ((DPTR PTR) LIST}]

; "Used* ({#DECL {(DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special® []1]]
; "Functions called®™ ([PATHNAME PPRINT]
; "Environment” [] ]
"Location® "MDC"
"Feference® ["MDC*]
"Description® [°®
L moves the pointur to the left in the {ils avdel."]
"Argument” [
; "Template® [#DECL ("VALUE" C(OR FALSE STRING)> "OPTIONAL® FIX)

"returns pathname of the pointer®]
; "Argument-type" ["FIX"]
; "Result-type® ["FALSE" "STRING"] ]
"Example” (<L "moves pointer to the left 1 place®
<L .FIX> ‘"moves pointar to the left .FIX places®]

"Notes® []




®s e we we we was we we PV

57

"Unique-name® "DR!'-MDC"
"Name" "DR"
"Author" "SAB"
"Object-type™ “FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
*Pescriptor® ["MOVE" "PCINTER* *DOWN" "RIGHT" "MODEL® "CONTEXT"]
"External-interactions® [
; "Side-effect” []
; "Variables" {
; "Global® [}
; "Local" [

; "Set® ([#DECL ((DPTR DSTLST PTR STLST) LIST))

; “Used™ [#DECL ((HIDE) FIX (DPTR DSTLSY PTR STLST) LIST)]

: "Special® (] 1]
; "Functions called" [PATHNAME PPRINT)
; "Environment™ [} ]
"Location® “MDC"
“Refrrence® ["MDC"]
"Description™ [*
DR moves the pointer down and tc tie right in the file model.”]
"Arqument" [
; "Template” [#DECL ("VALUE"™ <OR FALSE STRING>)

"returns pathname of the pointer"]

; "Argument-type® []
; "Result-type® ["FALSE" "STRING"] ]
"Example® [<DR> *moves the pointer down one level to the right"]
"Notes® []




i we we vo we we we ws P

"Unique-nme® *DL!-MDC"
“Name" "DL"
"Author®™ "SAB"
"Object-type" “FUNCTION®
"Contents” []
"Category" [ *DATA-HARNDLING") .
"Descriptor® ["MOVE" *POINTER® "DOWN® "LEFT" *"MODEL® “CONTEXT®)
"External-interactions® [
; "Side-uffect” []
; "Variahles® [
; "Global® []
; "Local"” [

; "Set" []

; "Used" ({#DECL ((DPTR STLST) LIST (HIDE) FIX}]

; "Special® []] ]
; "Functions called® ([PATHNAME PPRINT R DR L]
; "Lavironment® [] ]
"Lccation™ "MDC"
"Reference” ["HDC"]
"Description® [
DL moves the pointer down and to the left in the file model.")
"Argument® [
; "Template" [#DECL ("VALUE"™ <OR FALSE STRING))

*returns pathname of the pointer*]

; "Argument-type" []
; "Result-type® ["FALSE" °*STRING"] ]
"Example® [<DL> "moves the pointer down one level to the left"]
"Notes" []




@e we we we wa we v

59

"Unique-name® "UL'-MDC"
"Name" "UL"
"Author" "“SAB"
*Object-type™ “FUNCTICN®
"Contents® {]
"Category”" [ "DATA-HANDLING"]
“Descriptor® ["MOVE® "POINTER™ "UP" “LEFT® "MODEL" "CONTFAT"]
"External-interactions® [
i "Side-effect™ []
; "Variables® [
; "Global" []
; "Local" [

; "Set"™ [#DECL ({DPTR DSTLSY MR STLST) LIST)]

. "Used™ [#DECL (!DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special®™ [] 1]
; "Functions called” [PATHNAME PPRINT]
; "Environment® [] ]
"Location™ "MDC"
"Reference” ["NDC")
"Description® [*
UL moves the pointer up and to the left in the file model."]
"Argument® [
; "Template™ [#DECL ("VALUE" <OR FALSE STRING?)

“returns pathname of the pointer®]

; "Argument-type" []
; "Result-type™ ["FALSE"™ "STRING"] j
"Example* [<UL> "moves pointer up one level to the left"]
“Notes" []




3¢ we ws we s M

60

UR? -ADC®

"Author®" “SAB"
"Object-type™ “FUNCTION"
"Contents® []
"Category®™ ["DATA-HANDLING"]
"Descriptor® ["MOVE" "POINTER® *UP® "RIGHT® "MODEL® °CONTEXT®]
*External-interactions® [
; "Side-effect®™ [°DATA"]
; "Variables® (
; "Global® [}
; "Local" [

; "Set™ [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used" [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FiX)]

; "Special® []]]
; "Functions called® ([PATHNAME PPRINT]
; "Environment® [] ]
"Location® "MDC"
"Reference® ["MDC"]
"Description® [*
UR moves the pointer up and te the right in the file model.®]
"Argument” [
; “Template® [#DECL ("VALUE" (OR FALSE STRING>)

*returns pathrame of the pol r®]

; "Argument-type” []
. "Result-type" ([°FALSE" *"STRING*] ]

"Example® [<UR) "moves tha pointer up one level to the right®]

*Notes" []




we we we we we we we we ™

-

61

"Unique-name® “REQUEST!-fADC®
“Name" "REQUEST"
"Author" “SAB"
"0Object-type® *FUNCTION"
"Contents” []
"Category" [ "PROGRAM-CONTROL®" °NETWORK")
"Descriptor® [“DATACOMPUTER® °FILE® "FIELD® °*OUTPUT® °"RESULT®]
"External-interactions” [
; "Side-effect” [}
; "Variables" [
; "Glebal” []
; "Local® [

; "Set” [

; "Used™ [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Special® [#DECL ((STK} uiST (N K) FIX)] 1]
; "Functions called" [COMRET REQLIST]
: "Environment® [ ] ]
"Location" “"MDC"
"Reference” ["MDC"]
"Description” [
"REQUEST sets the request field for information retrieval.
This field determines what field(s) of the Datacomputer file should
be ontput.”]
“Argument” [
; "Template* [#DECL ("VALUE® STRING LIST)
"Argument 1 is a list of field names. Returns pointer pathname."]
; "Argument-type" ["LIST"]
; "Result-type® ["STRING"] }
"Example® [<REQUEST (MONTH DAY HOST STATUS)>
"This example is taken from the SURVEY FILE. It will cause the
Datalanguage program to ask for the date, host, and status fields."]
"Notes" []




€0 ®i e+ @s we we we was P

*Unigue-name” “TIME-CONSTANT!-NDC"
"Name® "TIME-CONSTANT"
“Author® “SAB"
"Object-type" "FUNCTION®
"Contents" []
"Category® ["PROGRAM-CONTROL®]
"Descriptor® ["TIMEOUT* "LINIT® "MODIFICATION® ®ICP"]
"External-interactioax® [
; "Side-effect” []
; "Variables® [
; "Global” []
; "Local” [

; "Set" [#DECL ((TIME.CONSTANT) FIX)]

; "Used® []

; "Special® ([]11]1]
; "Functions called" []
; "Environment® [] ]
"Location® "MDC"
"Reference” ["MDC"]
"Description® [*
TIME-CONSTANT is used to control the initial connection to the
Datacomputer. It determines how long the ICP should wait for
acknowledgement from a foreign host. If this function 1s not
called, the waiting period will bs 20 seconds.®]
"Argument® [
; "Template" [#DECL ("VALUE" FIX CUNSPECIAL FIX))

"Argument is number of seconds. Retur : number of seconds.®]

; "Argument-type” ["FIX"]
i "Result-type™ ["FIX"] ]
"Example® [(TIME-CONSTANT 60> "It wili wait for 60 seconds."]
"Notes" []




@s ®e we we we e wme wa

63

"Unique-name® "CON'-MDC"
"Name" "CON"
"Author" "SAB"
"Object-type" “FUNCTION®
"Contents® []
"Category" ["1/0"]
"Descriptor® ["CONNECTION" ®ESTABLISH® "DATACOMPUTER® "ICP"]
"External-interactions® {
"Side-effect® ["1/0"]
; "Variables" [
; "Global" [
; "Setg'd* []
; "Used" ([#DECL {(NOUT) <OR CHANNEL FALSE>)] ]
; "Local® [
; "Set™ [#DECL ((SYNCF) FIX)]
i "Used" [ADECL ((¥D) LIST)]
; "Special"™ [#DECL ((N) <SPECIAL STRING))] 11
; "Functions calied* [DIS PCON CONNECT]
; "Environment* {] ]
"Location® "HDC"
“Reference” ["MDC"]
"Description® ["
CON attempts tc establish Network channels to/from the Datacomptter."]
"Argument® [
; "Template® [#DECL ("VALUE" <NR FALSE STRINGD)
"returns the string 'Connection to datacomputer completed.'"]
; "Argument-type" []
; "Result-type® ["FALSE" "STRING"] ]
"Example™ [<CON> "Invokes conngction rites."]
"Notes” [° '
Normally CON will not be needed. <INIT)> initializes the program and
establishes the Network channe 5."]




*o we we wr we we wo uor P

64

*Unique-name” "DIS!'-MDC"
"Name" *DIS"
"Author" “SAB"
"Object-type" "FUNCTION®
"Contents™ []
"Category"™ ["1/0"]
"Descriptor® [ "CONNECTION®" “TERMINATE® "DISCONNECT® *DATACOMPUTER" ]
"External-interactions® [
; "Side-effect® ["1/0"]
; "Variables” {

; "Global" {

; "Setg'd” []
; "Used"” ([#DECL ({NIN NOUT) <OR CHANNEL FALSE>)] ]

i "Local” {] ]
; "Functions called” (]
; "Environment" [] ]
"Location" “"NDC"
"Reference" ["NDC"]
"Description" {*
DIS closes the Network channels to/from the Datacomputer.®]
"Argument® {
; "Template® ([#DECL {"VALUE" STRING)

"returns the string 'Connection to datacompu’er has been severad.'®]
; "Argument-type® []
; "Result-type® ["STRING"] ]
"Example™ [<(DIS>]
"Notes" []




we we we we we me we wa ™9

-

65

*Unique-name® “EXECUTE'-MDC"
"Name"® “EXECUTE"
"Author®™ "SAB"
"Ob ject-type™ "FUNCTION®
"Contents"” []
“Category™ ["I/0" "NETWORK"]
*Descriptor™ ["QUTPUT™ "DATALANGUAGE® "SEND" *PROGRAM" ]-
"External-iuteractions” [
; "Side-effect” ["i/0%]
; "Variahles® [
; "Global" [
; "Setg'd* []
; "Used"™ [#DECL {(NOUT) <(OR CHANNEL FALSE>)] j
; "Local® [

; "det" [1]

i "Used" [#DECL ((PORTN) STRING (SYNCF) FIX)]

; "Special®™ [4DECL ((AC1) ACTIVATION)] 1 ]
; "Functions called” ([EXEC PCON]
; "Environment® {] !
"Location™ "HDC"
"Reference® ["MDC"]
"Description® ["EXECUTE execute. _he REQUEST to the Datacomputer.”)
"Argument" [
; "Template” ([#DECL ("VALUE"™ <(OR CHANMEL FALSE>)]
; "Argument-type® (]
; "Result-type™ ["CHANNEL" "FALSE"] ]
"Example® [<FILECOPY <EXECUTE> .QUTCHAN)

"prints the information retrieved on the user's console"]

"Notes® []




65

“Unyque-name®™  "[NIT!-MDC"
“Napne"  "INIT®
"Author™ "SAB"
"Uhrect-type™  "FUNCTION®
"Contents® [}
"Category"” (["1/0"}
"Descriptor™ ["IHNITIALIZATION® "SETUP* *CONNECTION® "FSTABLISH"
"1CP" "DATACOMPUTER™ "LOGIN® "MODEL"™ ®*FILE")
"External-interactions® [
; "Side-effect” ["1/0]
; "Variables" [
; "Global" []
; "Local" [
; "Set" [4DECL (
(DFD P « DSTLST FD PTR SIMPLENAME STLST) LIST
(HIDE SOAK TIME.CONSTANT) FIX (TEM1) STRING)]
; "Used™ [#DECL ((DFD FD) LIST (INCHAN) <OR CHAMNEL FALSE>)]
; "Special® []]]
; "Functions called™ [CON INITVAL SINPLIFY CDISP]
: “Environment® [] ]
"Location" "pCT
"Reference"” ["MBC"])
"Nescription® [
INIT initializes the program and sets up Network channels to/froa
the Datacomputer.®]
"Argument" [
; "Temp,ate" [#DECL {"VALUE™ STRING}]
i "Argiament-type” |
; "Result-type® ["STRinc"] ]
“Example* [
CINIT

"It will ask for the name of a local tile containing a Datacomputer

file description and for a login name.®

"SAB;PEOPLE FILF" *“inis is a local file."
"MIT.DMS.SURVEY" *This is a login rame."]
"Notes" {}




